

DEVELOPMENT OF DIELECTRIC-BASED HIGH GRADIENT ACCELERATING STRUCTURES

C. Jing^{1,2}, A. Kanareykin¹, W. Gai², R. Konecny², J. Power², W. Liu^{2,3}, S.H. Gold⁴, and A.K. Kinkead⁵

¹ Euclid Techlabs, LLC, 5900 Harper Rd, Solon, OH-44139
 ² High Energy Physics Division, Argonne National Laboratory, Argonne, IL-60439
 ³ Physics Department, Illinois Institute of Technology, Chicago, IL-60616
 ⁴ Plasma Physics Division, Naval Research Laboratory, Washington DC, 20375
 ⁵ LET Corp., Washington DC, 20007

AAC2006

OUTLINE

- 1. The Recent High Power rf Testing of Quartz Based DLA Structure
- 2. Ways to Higher Gradient for DLA Structures
 - > small I.D. quartz DLA structure design: Test high gradient and multipactor power scaling
 - ➤ Gapless DLA structure based on the new coupler design
 - ➤ Low loss double layer DLA structure

Part I

- 1. The Recent High Power rf Testing of Quartz Based DLA Structure
- 2. Ways to Higher Gradient for DLA Structures
 - > small I.D. quartz DLA structure design: Test high gradient and multipactor power scaling
 - ➤ Gapless DLA structure based on the new coupler design
 - ➤ Low loss double layer DLA structure

High Power RF Testing of The Quartz Based DLA Structure (I) -----Introduction

•Dielectric-Loaded Accelerating (DLA) structure is a potentially candidate for the high gradient accelerator in the future.

- •DLA Structure Development:
 - ·1) Coupler Breakdown (cured)
 - •2) Multipactor (Anomalous Power Absorption)
 - ·3) Joint Breakdown at the dielectric gap.
 - ·4) Tested Materials: MgCaTiO, Alumina, TiN coated Alumina
- •Motivation for Quartz Test: to test the multipactor effect of the different material due to quartz has relatively low secondary electron yield.

High Power RF Testing of The Quartz Based DLA Structure (II) ------Design & Fabrication

Parameters	Value
Material	Fused Silicon
Inner Radius	8.97mm
Outer Radius	12.08mm
Dielectric Const	3.78
Group Velocity	0.38c
R/Q	3.614kΩ/m
Shunt Impedance	27.9 MΩ/m *
Q	7715*
Power ATTN	0.35dB/m*
RF power needed to	
support 1MV/m	439kW
gradient	

^{*}Loss tangent of the dielectrics is $2*10^{-5}$.

High Power RF Testing of The Quartz Based DLA Structure (III) ------Bench Testing

High Power RF Testing of The Quartz Based DLA -----High Power Testing Setup at NRL

High Power RF Testing of The Quartz Based DLA Structure (V) ----- Testing Results (i)

No breakdown up to ~5 MV/m Large multipactor again

High Power RF Testing of The Quartz Based DLA Structure (VI)

----- Testing Results (ii)

Using PMT to monitor Multipactor turning on

Multipactor Turn-on time

High Power RF Testing of The Quartz Based DLA Structure (VIII)

----- Comparison

- ➤ Dielectric Breakdown: Not seen in any structure
- ➤ Multipactor Induced Power Loss: lower in MCT and Quartz, saturate in Quartz and Al-TiN
- ➤ Joint Breakdown: >100 MV/m at joint in MCT;

High Power RF Testing of The Quartz Based DLA Structure (IX) ------ Summary

→DLA Progress to Date

- >Four generations of couplers and structures designed and tested.
- →Four different dielectric materials tested (Alumina, Fused Quartz, MCT, TiN coated Alumina)
- →No Breakdown of the bulk dielectric observed (up to 8 MV/m)
- Multipactoring and joint breakdown discovered; developed schemes to suppress
- → Gained fundamental understanding of the issues and developed new multipactoring theory.

→DLA Future High Power Tests

- → Joint-less DLA Structures (avoid joint breakdown)
- → Small I.D. (Reduce Multipactor)
- → Double Layer (Lower Power Attenuation)

Part II

- 1. The Recent High Power rf Testing of Quartz Based DLA Structure
- 2. Ways to Higher Gradient for DLA Structures
 - ➤ Small I.D. quartz DLA structure design: Test high gradient and multipactor power scaling
 - ➤ Gapless DLA structure based on the new coupler design
 - ► Low loss double layer DLA structure

Small ID Quartz Based DLA structure design (I)

-----Parameters for different loaded materials

Loaded Material	dimensions	Group Velocity	Bandwidth (S11<-15dB)	Gradient per 10MW	Gradient per 100MW
Quartz $(\epsilon=3.75)$	ID=2mm OD=12.52mm	0.267c	480MHz	12.3MV/m	38.9MV/m
Cordierite (ε=4.76)	ID=2mm OD=10.85mm	0.21c	350MHz	14.6MV/m	46.2MV/m
Alumina (ε=9.77)	ID=3mm OD=8.23mm	0.1c	300MHz	19.8MV/m	62.6MV/m
MCT (ε=20)	ID=3mm OD=6.42mm	0.05c	42MHz	26.5MV/m	83.8MV/m

zie Small ID Quartz Based DLA structure design (II) 1977 1713 ----- simulation 1450 S-Parameter Magnitude in dB **6**59 45/T 4285 S-Parameter Magnitude in dB 3714 Highest field appears 3142 with the gap induced. 2571 2000 1428 -857 -286 -

Frequency / GHz

Part II

- 1. The Recent High Power rf Testing of Quartz Based DLA Structure
- 2. Ways to Higher Gradient for DLA Structures
 - > small I.D. quartz DLA structure design: Test high gradient and multipactor power scaling
 - ➤ Gapless DLA structure based on the new coupler design
 - Low loss double layer DLA structure

Gapless DLA structure based on the new coupler design*(I)

----- concept

New design uses the coaxial coupler which eliminates the dielectric taper section in the current design

Gapless DLA structure based on the new coupler

design (II) ----- coupler simulation

Gapless DLA structure based on the new coupler design (III) ----- Structure simulation

= 90 degrees

Maximum-2d = 5301.87 V/m at

Monitor Component = Abs

Maximum-3d = 5847.91 V/m at 3 / 0 / 21.37

Frequency = 11.424 = 0 degrees

There is no dielectric gap in the structure.

·Highest E-field appears at inner conductor tip, but the field enhancement ratio has only 1.6 to the accelerating gradient.

2320

1657 994

Part II

1. The Recent High Power rf Testing of Quartz Based DLA Structure

2. Ways to Higher Gradient for DLA Structures

- > small I.D. quartz DLA structure design: Test high gradient and multipactor power scaling
- ➤ Gapless DLA structure based on the new coupler design
- ➤ Low loss double layer DLA structure

Low loss double layer DLA structure (I)

----- Concept

X-band Dual layer Dielectric-Loaded Accelerating Structure, funded by SBIR, is being developed at Euclid Techlabs, LLC in recent several months. So far, the entire targets proposed in Phase I plan have been accomplished which include fabrication of dual layer ceramic tube, simulation and fabrication of TM₀₃ mode launcher and bench testing.

Ceramic with high permittivity (37) Ceramic with low permittivity (9.7)	☐ Air ☑ Metal jacket	Group velocity (×c)	R (MΩ/m)	R/Q (Ω/m)	Power Attn (dB/m)
	1 layer DLA TM ₀₁ mode IR:3—4.13mm	3%	11.7*	1681*	-20*
	1 layer DLA TM ₀₃ mode IR:3—8.49mm	3%	7.4*	1553*	-7.8*
	2-layer DLA TM ₀₃ Mode 5.17—12.02mm	6%	14.5*	2040*	-2.3*

Low loss double layer DLA structure (II)

Electric field of dual layer DLA structure simulated with Microwave Studio®: (a) vector plot; (b) magnitude.

Magnetic field pattern of the double layer DLA structure simulated with Microwave Studio®: (a) vector plot; (b) magnitude.

Monitor

Plane at z = 35Frequency = 11.424

= H-Field (peak)

Low loss double layer DLA structure (III) ____TM₀₃ Mode Launcher

Low loss double layer DLA structure (IV) Bench Testing

Based on the results of bench testing, the dual layer DLA structure has 4dB/m attenuation. which slightly larger than the theoretical value, 2.5dB/m. It is partly due to the larger loss from copper rough surface, and 11.474 slightly higher loss tangent of ceramc tube.

Summary

- We have tested RF and multipactor behaviors of the quartz based DLA structure;12MW rf power was input without breakdown; saturation stage of the multipactor appeared at 1MW rf input; the same structure will be tested with higher rf power.
- We are moving forward with some new DLA structures design to try to achieve a higher accelerating gradient and lower RF loss.

